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Abstract 

Local influence is a useful tool to detect abnormalities in regression models, 
Cook proposed this method in 1986 for classical regression models and, since 
then, numerous extensions have been developed. The aim of this paper is to 
derive methods to asses local influence under various perturbation schemes, for 
compound-Poisson regression models. These models can be applied to 
continuous data with positive probability in zero, and they are characterized by 
the variance function that defines the mean-variance relationship. Formulas  
are obtained to apply local influence methods for different perturbations and it 
is of particular interest the perturbation of the parameter that defines the 
mean-variance relation. These schemes are applied to perturbed data  
generated by simulations and the sensibility of the method is compared for 
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different values of the parameters. Finally, a real data set about home 
expenditures is analyzed and local influence graphics are obtained to detect 
influential points. 

1. Introduction 

The main goal of this paper is to adapt local influence methods 
proposed by Cook [4] for classical linear models and extended by Thomas 
and Cook [24] for generalized linear models, to compound-Poisson models. 
The usual perturbation schemes (case, covariables, and response 
perturbations) are considered and also a new scheme that perturbs the 
mean-variance relationship is proposed and analyzed. 

Local influence method has become an important tool, largely applied 
in regression analysis. Its goal is to study how sensitive the results of the 
analysis are to minor perturbations applied on the data or in the model 
itself. Many applications of the local influence method can be found in the 
statistical literature for various regression models under different 
perturbation schemes. Under normal errors, for instance, Lawrence [14] 
investigated the case of transformed response, Beckman et al. [2] of linear 
mixed-effect analysis of variance, Tsai and Wu [25] studied the case of 
auto regressive models, and Molenberghs et al. [15] applied local 
influence to assess the sensitivity of the dropout process in longitudinal 
studies. An important extension to generalized linear models was 
proposed by Thomas and Cook [24] making it possible to consider a wider 
scenario. Since then numerous articles have considered other contexts, 
some of them are: restricted generalized linear models (Paula [19]), 
generalized log-gamma regression models (Ortega et al. [17]), negative 
binomial (Svetliza and Paula [22]), elliptical t-distributions (Galea et al. [9]), 
elliptical linear models with longitudinal structure (Osorio et al. [18]), 
reproductive dispersion models (Tang et al. [23] and Fu et al. [8]), and 
Poisson inverse Gaussian regression models (Xie and Wei [27]). 

In this paper, we consider the problem of assessing local influence in 
compound-Poisson regression models. These distributions are a subset of 
Tweedie models (see Tweedie [26] and Jørgensen [12]) characterized by 
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their mean-variance relationship given by ( ) ( )1,0, −∈µ=µ RpV p  

being µ  the expected value; given a set of observations, the optimal value 

for p can be calculated via profile likelihood (Dunn and Smyth [6]) and in 
this way, one can choose between infinite options for the model. A 
drawback is that their density functions can not be written in closed form, 
however, they have simple moment generating functions, so the densities 
can be evaluated numerically by Fourier inversion of the characteristic 
functions (Dunn and Smyth [7]). Other remarkable aspects about these 
models are that, they are exponential dispersion families invariant under 
change of scale and they are also limit distributions for some exponential 
dispersion models (Jørgensen [13]). They have been applied, for example, 
to insurance claims by Smyth and Jørgensen [21], fisheries (Shono [20] 
and Candy [3]), rainfall prediction (Dunn [5]), and home expenditures 
(Alegre et al. [1]). 

In Section 2, we present the compound-Poisson distributions and 
derive their first moments as well as the score function and the 
information matrix. Section 3 is devoted to describe local influence 
analysis applied to these models, under various perturbation schemes, 
one of them perturbs the mean-variance relation. Section 4 presents a 
simulation study and applications to real data. Finally, in Section 5, we 
elaborate some conclusions. 

2. Compound-Poisson Models 

Let be independent random variables, N is a Poisson distributed 
variable, and iX  are have distributions in the exponential dispersion 

family (Jørgensen [11] and Dunn and Smyth [7]). Let Y  be a random 

variable defined as follows: 
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it can be proved that the density function of ,Y  for 21 << p  is given by 
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being −∈θ R  the position parameter and 0>φ  the dispersion 

parameter. Limit cases are Poisson ( )1=p  and gamma ( )2=p  models. 

The mean and variance of Y  are 

( ) ( ) ( )( ) ,1 1
1

ppE p −θ−=θ=µ= κ�Y  (3) 

( ) ( ) ( ),Var µφ=φµ=θφ= Vp
pκ��Y  

where ( ) pV µ=µ  is known as variance function and it characterizes the 

distribution of .Y  

Given a vector of observed values [ ] ,21
t

nyyy …=y  the log-likelihood is 

given by 
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For simplicity, it will be assumed that φ  is fixed or that it has been 
estimated externally. Let us consider now a generalized linear regression 
model (Nelder and Wedderburn [16]) given by 

( ) , == Xg µ  

where X is the matrix of explanatory variables with dimension 
( ) ,1+× qn  is the vector of coefficients, and g is a growing and smooth 

function given by ( ),1 θ−
pκ�  it’s named canonical link and it ensures 

sufficient estimators for .  Another link function have been proposed by 
Dunn and Smyth [7], who modifies ( )θκ  in such a way that 1=µ  when 

0=θ  and by Hardin and Hilbe [10] that define p−µ1  as the link function. 

The log-likelihood can be re-written in terms of   as 
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The components of the score function for   are 
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The observed information matrix for compound-Poisson models with 
canonical link is given element wise by 
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and in matrix form, 

( ) ( ) ,diag12
XXLL pt

t µ
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where ( )pµdiag  is a diagonal matrix with p
iµ  in place ( )., ii  

3. Local Influence 

Let us suppose now that data is affected by a perturbation scheme 

represented by a vector ( )tnωω= ,,1 …  that belongs to some open 

region .nR⊂Ω  Let ( )ωL  be the log-likelihood of the perturbed model 

and l
ω

β  be the corresponding maximum likelihood estimator. Cook [4] 

proposed to evaluate the influence of   on the maximum likelihood 

estimate l,β  by considering the likelihood displacement given by the 

function 

( ) l( ) l2 .F L L
ω  = −  

  
ω β β   (7) 

Using expression (7), the estimators lβ  obtained for the original model 

can be compared with those obtained for the perturbed model l .
ω

β  On the 

other hand, for each scheme, there will be a vector 0ω  in Ω  representing 

no perturbation, in such a way that l l( )0L L
ω  = 

 
β β  and ( ) .00 =F  
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The surface defined by ( )F  reaches a minimum at ,0  for this 

reason, Cook [4] proposed an influence diagnostic procedure that consists 
in choosing at that point, those directions d of greater variation. A first 
approximation to the surface is given by its tangent plane, but in ,0ω  the 

function has a minimum so the plane is horizontal and gives no 
information at all. It becomes necessary to work with second order 
approximations, given by normal curvatures ( ),dC  and then to analyze 

the unit direction maxd  such that the normal curvature maxC  defined by 

this direction is the one of greater variation. Cook [4] proved that, for 
linear models, ( )dC  takes the form 
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this expression will depend on the perturbation scheme. 

Let maxC  be the greater eigenvalue of l 1t L
−

∆ ∆��  and maxd  be the 

corresponding eigenvector. A plot of the elements of maxd  will reveal 

those observations that exert a great influence on ( )L  under small 

perturbations. Generally speaking, to detect influential points, the 
following steps have to be performed: 

(1) Specify a perturbation scheme. 

(2) Obtain ∆  for the selected perturbation scheme. 

(3) Calculate the unit direction of maximum normal curvature .maxd  

(4) Make an index plot of .maxd  
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In the following subsections, some schemes of perturbation to 
compound-Poisson models will be detailed. First, the usual ones (cases, 
one covariable and vector of responses) and finally the perturbation of the 
parameter p, that defines the mean-variance relation, will be analyzed. 

3.1. Perturbing cases 

Step 1. The elements of   can be viewed as weights for each case 
that perturb the terms of the log-likelihood. The likelihood of the 
perturbed model is, regarding (4) 
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Step 3. For this scheme of perturbation maxd  is the eigenvector 
correspondent to the greater eigenvalue of 

l ( l ) ( ( ) ) ( l )11 ˆdiag diag diag .t p tX X X X− −−
φ

yy µ µµ   (11) 

welcome
=

welcome
Please check  =  or +

welcome



LOCAL INFLUENCE IN COMPOUND-POISSON … 45

This expression agrees with the results presented by Xie and Wei [27]. In 
this scenario, an index plot of maxd  will reveal those observations for 

which a small change produces great changes in the estimators. 

3.2. Perturbing one covariable 

In this subsection, perturbations on a particular continuous 
covariable will be considered. We search points, whose values in that 
covariable exert a great influence on the model likelihood. 

Step 1. Let us suppose that the covariable being analyzed is ,rx  the   

r-th column of matrix X will be perturbed by adding a vector   scaled by 
the norm of the column rs  (Beckman et al. [2]). The perturbed column 

becomes 

,rrr sxx +=ω  

and nR∈= 0  represents a null perturbation. This scheme will affect 
the likelihood function only through the estimator of the position 
parameter ,θ  the perturbed vector is determined element wise by 
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The corresponding perturbed likelihood function is 
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In matrix form, 

l ( l ) � ( )( )ˆdiag ,t t pr
r r

s X−∆ = −β
φ

yu µ µ   (15) 

where 1+∈ q
r Ru  is a vector with 1 in the r-th place and 0 elsewhere. It 

is a particular case of the expression given for ∆  by Thomas and Cook in 
[24]. Similar results have been reported by Tang et al. in [23] for 
reproductive dispersion models and by Xie and Wei in [27] for Poisson 
inverse Gaussian models with equi-dispersion. 

Step 3. Viewing (15), maxd  is the eigenvector correspondent to the 

greater eigenvalue of 

l ( l ) � ( )( ) ( ( ) ) 1diag diagt p t pr
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φ
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r r X−× − βyu µ µ  
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A plot of maxd  versus the index i will show that observations, where a 

small change in column rx  generates great changes in the estimators. 

3.3. Perturbing the response 

Step 1. Following Thomas and Cook [24], in order to perturb the 
response y, we add a vector   scaled by an estimate of the standard 

deviation of each observation: l .p
i is = φµ  The perturbed vector of 

observations is ,ω+=ω syy  where   is the element wise 
multiplication; 0=  represents no perturbation and the corresponding 
log-likelihood is given by 
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In matrix form and specializing in the MLE 

l
l1 diag ,

ptX S
− ∆ =  

 φ
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being ( ).diag isS =  The same result has been reported by Xie and Wei 

[27] for .1=φ=s  
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Step 3. The direction of maximum curvature will be determined by 
the eigenvector associated with the maximum eigenvalue of the following 
matrix: 

l ( ( l ) ) l1diag diag diag ,
p p pt tS X X X X S

− −−      
   
µ µ µ  

and will reveal those cases for which a small change in the response 

produces big changes in l.β  Again, this is a particular case of the method 

proposed by Thomas and Cook [24] and also agrees with Tang et al. [23]. 

3.4. Perturbing the power parameter 

Parameter p defines the mean-variance relationship and it is 
estimated maximizing a profile likelihood curve as described by Dunn and 
Smyth [6]. If the data set includes points that are overly influential, it 
may be that the estimator is biased and, consequently, the results 
obtained would be erroneous. The purpose of this subsection is to define a 
scheme of perturbations in order to evaluate the sensitivity of maximum 
likelihood estimators to modifications in p. The perturbation scheme 
should be defined in such a way that the perturbed parameter ωp  

belongs to (1, 2); an option is given by 

( ) .,11 R∈ω+−=ω pp   (17) 

In this way, for each fixed ( ) ω∈ pp ,2,1  can take any value between 1 

and 2 with ω  varying in R  and with this scheme, all possible pairs 
( )ωpp,  in ( ) ( )2,12,1 ×  are considered; 1=ω  represents no perturbation. 

Step 1. The perturbed log-likelihood is given by 
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This result agrees with Svetliza and Paula [22]. Differentiating with 
respect to   
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Step 3. The matrix ∆∆ −1Lt ��  can be written as 

( ( l ) ) 1diag ,
pt t tA X X X X A−µ   (18) 

and an index plot of the elements of the eigenvector maxd  will reveal that 

cases that are influential, when perturbing the mean-variance 
relationship. 



LILA RICCI and PATRICIA ALEGRE 50

4. Simulation Study 

The goal of this section is to explore the effects of perturbing the 
mean-variance relation, under different settings for p and .φ  One 

covariable was generated as [ ],1 i
t
i x=x  where x has uniform 

distribution in ( ),1,0  and µ  was calculated applying the inverse link 

function as follows: 

( ) ( ) ( ) ( ).1 111 pt
i

t
ii pg −− β−−=β=µ xx  

We took 110 −=β=β  and, for each combination of { }8.1,5.1,2.1∈p  

and { },10.0,01.0∈φ  sets of 50 cases were generated as 

( ) .501,,~ ≤≤φµ iTwy ipi   (19) 

All simulations were carried out in R (R Development Core Team, 
2010). The function rtweedie( ) from the Tweedie package ([6]) was used 
to generate observed values and models were fitted by using the Tweedie 
family option from the statmod package, for the distribution of the 
response variable. 

To disturb p a perturbation was applied on the 90th percentile of 
( )90pµ  and to a point chosen at random ( );randP  500 replics were 

performed. Two values were chosen for   in (17): 0.13 and 7.5, in such a 
way that, when 8.1,2.1 ω= pp  and vice-versa; when ,5.1=p  

005.1ωp  and 1.9. Two benchmarks were used 

( ) ( ) ,MAD3median maxmax dd +  

( ) ( ) .MAD5median maxmax dd +  

The proportions of replics with 90P  or randP  greater than the cutting 

points were calculated and they are shown in Table 1. Also, a graphical 
representation of these results is given in Figure 1. As can be seen there, 
when the 90th percentile is disturbed, the effect is almost always detected 
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by the method, but when the perturbed point is chosen at random, the 
proportion of cases detected is considerably lower. As expected, greater 
dispersion is associated with less sensibility. On the other hand, when 

2.1=p  or 1.8 (near the limits of the allowed interval (1, 2)), the method 

is less sensible than when .5.1=p  

Table 1. Percentage of times 90P  or randP  were greater than the cutting 
point 

  90P  90P  randP  randP  

p φ  3 MAD 5 MAD 3 MAD 5 MAD 

1.2 0.01 684 (85.5%) 775 (96.9%) 612 (75.5%) 763 (95.4%) 

 0.10 624 (78.0%) 774 (96.8%) 518 (64.8%) 757 (94.6%) 

1.5 0.01 680 (85.0%) 747 (93.4%) 606 (75.8%) 751 (93.9%) 

 0.10 565 (70.6%) 729 (91.1%) 495 (61.9%) 701 (87.6%) 

1.8 0.01 735 (91.9%) 781 (97.6%) 677 (84.6%) 766 (95.8%) 

 0.10 588 (73.5%) 726 (90.8%) 526 (65.8%) 677 (84.6%) 

 

Figure 1. Comparative bars for different cut points, perturbations, 
densities, and dispersions. 
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5. An Application to Real Data 

We present in this section an application of the local influence 
approach to data from the “Encuesta Nacional de Gastos de Hogares”, 
carried out each ten years by the “Instituto Nacional de Estadísticas y 
Censos” in Argentina; we considered a data set constituted by 2869 homes 
from Buenos Aires region in a given week in 1998. This survey registers 
home expenditures in recreation and leisure activity, classified in various 
concepts that were registered as shown in Table 2: each column 
represents a different concept (cinema, travels, etc.) and N is the number 
of concepts with positive expenditures. Total expenditure (TE ) was 
defined as 

,1,
1

nixy ij

N

j
i

i
≤≤= ∑

=

 

where iy  is the value of TE in the i-th home, ijx  is the expenditure in 

concept j, and iN  is the number of concepts with null expenditure. A 

total of 710 homes (25%) had no expenditures in any concept giving 
0=iN  and .0=iy  For the remaining homes, the mean value of TE was 

$68.46, and the maximum was $574.00. 

Table 2. Data matrix format 

 Concept A Concept B Concept C Concept D Total N 

Home 1 $28,23 $32,14 $50,00 $26,30 $136,67 4 

Home 2 $25,00 $0,00 $69,00 $0,00 $94,00 3 

Home 3 $0,00 $0,00 $0,00 $0,00 $0,00 0 

Home 4 $78,25 $15,60 $0,00 $14,25 $108,10 3 

#              #              #              #              #             #  #  

Home 2869 $17,00 $0,00 $15,00 $0,00 $32,00 2 

 



LOCAL INFLUENCE IN COMPOUND-POISSON … 53

A generalized linear model was fitted to this data by Alegre et al. [1], 
considering the response TE as a compound-Poisson variable for which, 
the parameter p was estimated via profile likelihood (see [6]), the 
maximum was reached at .4.1=p  

 

Figure 2. Index plot of maxd  when perturbing the mean-variance relation. 

Five covariables were selected in the final model: head of household 
age (AGE ), head of household educational level (EDLEV ), number of 
members living in that house (NUM ), car propriety (CAR), and family 
income quintil ( ).QINC−  Perturbations to the mean-variance relation 

were analyzed, following the scheme given in Subsection 3.3. The index 
plot can be seen in Figure 2, clearly, the four most influential points 
correspond to observations 532, 1027, 2018, and 2753. They all were 
young people, with high income, high educational level, and high 
expenditure in recreation and leisure. 
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6. Concluding Remarks and  
Future Research 

We have discussed in this article applications of influence diagnostic 
in compound-Poisson regression models. Four perturbation schemes were 
considered, three of them known for other models: perturbing cases, 
perturbing covariables, and perturbing the response, and the fourth one 
that perturbs the mean-variance relation is inherent to compound-
Poisson models. The corresponding matrices, whose greater eigenvector 
will detect influence points, were derived for these schemes. A study 
carried out by simulations evidenced lightly more sensibility when the 
parameter p of the compound-Poisson density approaches 1 or 2. As 
expected, for increasing dispersion, there is less sensibility. A data set 
about home expenditures was analyzed and influential points were 
detected and characterized. 

References 

 [1] P. Alegre, N. Liseras and L. Ricci, Una aplicación de los modelos Tweedie a las 
decisiones económicas de los hogares, VII Congreso Latinoamericano de Sociedades 
de Estadística, Rosario, Argentina, 7 (2006), 16-17. 

 [2] R. J. Beckman, C. J. Natsheim and R. Dennis Cook, Diagnostics for mixed-models 
analysis of variance, Technometrics 29 (1987), 413-426. 

 [3] S. G. Candy, Modelling catch and effort data using generalized linear models, the 
Tweedie distribution, random vessel effects and random stratum-by-year effects, 
CCAMLR Science 11 (2004), 59-80. 

 [4] R. D. Cook, Assesment of local influence, Journal of the Royal Statistical Society B 
48 (1986), 133-169. 

 [5] P. K. Dunn, Occurrence and quantity of precipitation can be modelled 
simultaneously, International Journal of Climatology 24 (2004), 1231-1239. 

 [6] P. K. Dunn and G. K. Smyth, Series evaluation of Tweedie exponential dispersion 
model densities, Statistics and Computing 15 (2005), 267-280. 

 [7] P. K. Dunn and G. K. Smyth, Evaluation of Tweedie exponential dispersion model 
densities by Fourier inversion, Statistics and Computing 18 (2008), 73-86. 

 [8] Y.-Z. Fu, N.-S. Tang and X. Chen, Local influence analysis of nonlinear structural 
equation models with nonignorable missing outcomes from reproductive dispersion 
models, Computational Statistics and Data Analysis 53 (2009), 3671-3684. 



LOCAL INFLUENCE IN COMPOUND-POISSON … 55

 [9] M. Galea, H. Bolfarine and F. Vilca, Local influence in comparative calibration 
models under elliptical t-distributions, Biometrical Journal 47 (2005), 691-706. 

 [10] J. Hardin and J. Hilbe, Generalized Linear Models and Extensions, Stata Press, 
2001. 

 [11] B. Jorgensen, The Theory of Exponential Dispersion Models and Analysis of 
Deviance, Volume 51, Monografías de Matemática, IMPA, Rio de Janeiro, Brasil, 
1992. 

 [12] B. Jorgensen, The Theory of Dispersion Models, Chapman and Hall, 1997. 

 [13] B. Jørgensen, J. R. Martínez and V. Vinogradov, Domains of attraction to Tweedie 
distributions, Lithuanian Mathematical Journal 49 (2009), 399-425. 

 [14] A. J. Lawrence, Regression transformation diagnostics using local influence,   
Journal of the American Statistical Association 84 (1988), 125-141. 

 [15] G. Molenberghs, G. Verbeke, H. Thijs, E. Lesaffre and M. G. Kenward, Influence 
analysis to assess sensitivity of the drop out process, Computational Statistics and 
Data Analysis 37 (2001), 93-113. 

 [16] J. A. Nelder and R. W. M. Wedderburn, Generalized linear models, Journal of the 
Royal Statistical Society, Series A 135 (1992), 370-384. 

 [17] E. M. M. Ortega, H. Bolfarine and G. A. Paula, Influence diagnostic in generalized 
log-gamma regression models, Computational Statistics and Data Analysis 42 
(2003), 165-186. 

 [18] F. Osorio, G. A. Paula and M. Galea, Assesment of local influence in elliptical linear 
models with longitudinal structure, Computational Statistics and Data Analysis 51 
(2007), 4354-4368. 

 [19] G. A. Paula, Assessing local influence in restricted regression models,  
Computational Statistics and Data Analysis 16 (1993), 73-79. 

 [20] H. Shono, Application of the Tweedie distribution to zero-catch data in CPUE 
analysis, Fisheries Research 93 (2008), 154-162. 

 [21] G. K. Smyth and B. Jorgensen, Fitting Tweedie’s compound Poisson model to 
insurance claims data: Dispersion modelling, Astin Bulletin 32 (2002), 143-157. 

 [22] C. F. Svetliza and G. A. Paula, Diagnostics in nonlinear negative binomial models, 
Communications in Statistics 32 (2003), 1227-1250. 

 [23] N.-S. Tang, B.-Ch. Wei and X.-R. Wang, Local influence in nonlinear reproductive 
dispersion models, Communications in Statistics, Theory and Methods 30 (2001), 
435-449. 

 [24] W. Thomas and R. D. Cook, Assesing influence on regression coefficients in 
generalized linear models, Biometrika 76 (1989), 741-749. 

 [25] C. H. Tsai and X. Wu, Assessing local influence in linear regression models with  
first order autorregressive or heteroscedastic errors structure, Statistics and 
Probability Letters 14 (1992), 247-252. 



LILA RICCI and PATRICIA ALEGRE 56

 [26] M. Tweedie, An index which distinguishes between some important exponential 
families, Statistics: Applications and new directions, Proceedings of the Indian 
Statistical Institute Golden Jubilee International Conference, Series A 135 (1984), 
579-604. 

 [27] F.-Ch. Xie and B.-Ch. Wei, Influence analysis in Poisson inverse Gaussian  
regression models based on the em algorithm, Metrika 67 (2008), 49-72. 

g 


